Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 1 #### Attachment 1 Storm Resiliency Program Analysis and Acceleration Proposal Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 1 Page 1 of 7 ## Storm Resiliency Program Analysis and Acceleration Proposal Prepared By: Sara Sankowich, Richard Francazio, and Raymond Letourneau Unitil Service Corp. February 28, 2018 Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 1 Page 2 of 7 #### 1. Storm Resiliency Program Overview In 2012, Unitil embarked on a pilot study to test the effectiveness of performing targeted vegetation management to reduce effects of storm events on the electric system. This is known as the Storm Resiliency Program (SRP) today. This pilot was initiated after the Unitil Service territory in New Hampshire was met with 2 large events in 2011, Hurricane Irene and the October Snowstorm and had sustained other frequent major storm events over the past 4 years. The 2011 October Snowstorm caused widespread damage and prolonged outages and was ranked as the 3rd largest event in the state's history⁷ at the time. The Commission's Regulated Utilities' Preparation and Response Report indicated customers expressed frustration with costs incurred with the outages. "Customers also expressed frustration with the personal costs incurred as a result of multi-day outages. For residential customers, those costs are driven in part by the purchase of fuel for generators; lodging and meals for those who cannot remain in their homes; lost wages for those who work from home; and spoiled food with the loss of refrigeration. Business customers experienced revenue losses, as well. Without electricity, many customers in New Hampshire lack water, as well as heat." In after-storm meetings with towns and annual emergency preparedness meetings, Unitil also saw that customers expressed a desire for something to be done. Customer's increased reliance on technology coupled with the economic cost of service interruption and safety aspect contributes to the changing expectation of uninterrupted service. Certain towns even expressed support for more tree work to be done. The Company designed a plan to perform vegetation management activities on appropriate circuits and critical sections of these circuits over a ten year time period. The design was for critical 3-phase sections of a selected circuit, from the substation out to the first protection device, to have tree exposure reduced by removing all overhanging vegetation or pruning "ground to sky." Intensive hazard tree review and removal was conducted on these critical sections. In cases where the customer count was over 500 customers at the first protection device, overhang and hazard tree removal was continued to the second protection device. From that point, hazard tree inspection and removal was conducted out to the third protection device or along remaining three phase lines. ⁷ NH PUC "The October Snowstorm – New Hampshire's Regulated Utilities' Preparation and Response" November 20,2012, Appendix E p55 ⁸ NH PUC "The October Snowstorm – New Hampshire's Regulated Utilities' Preparation and Response" November 20,2012, Section VI p38 Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 1 Page 3 of 7 The SRP work has the ability to prevent tree related failures and subsequent electric incidents. This reduction in incidents reduces damage to the electric infrastructure and the need for crews to respond, reducing overall storm costs. However, tThere are also a number of additional benefits associated with a tree exposure reducing Storm Hardening program, including: - Preserving municipal critical infrastructure - Minimizing the dependence on mutual aid and off system resources - Minimizing the total number of resources required to restore service - Shortening the duration of major events - Minimizing the overall cost of restoration - Reducing economic loss to municipalities, businesses, and customers - Most cost effective solution vs. other alternatives - Minimal bill impact on a per-customer basis The Company believes that reliable electric service is essential to the economic well-being of the businesses and industries we serve, and to the welfare of those who live and work in our communities. Interruptions to electric service are both expensive to repair, and expensive to the businesses and individuals who rely on electricity for commercial and household purposes. To cite one example, a 2004 study conducted by Lawrence Berkeley National Laboratory (Berkeley Lab) (funded by the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy) estimated that electric power outages and blackouts cost the nation about \$80 billion annually. Of this, \$57 billion (73 percent) was attributed to losses in the commercial sector and \$20 billion (25 percent) in the industrial sector. In subsequent studies performed by Berkeley Lab in 2009 and 2015 provided extensive data on the cost of customer interruptions, including estimates of the average cost of electric interruptions (in 2008 and 2013 dollars respectively) broken down by customer type, outage duration, time of day, day of week, and other variables. In a company to the commercial sector and the cost of the average duration, time of day, day of week, and other variables. To test the validity of the program as designed, a pilot of the program was implemented in 2012 and 2013 which was met with positive results, acceptance, and praise from customers¹¹. With the Commission's support, in 2014 the storm resiliency pilot program became a full Storm Resiliency ⁹ Understanding the Cost of Power Interruptions to U.S. Electricity Consumers, Kristina Hamachi LaCommare and Joseph H. Eto, September 2004. ¹⁰ Estimated Value of Service Reliability for Electric Utility Customers in the United States, Michael J. Sullivan, Ph.D., et al, June 2009. Updated Value of Service Reliability Estimates for Electric Utility Customer in the United States, Michael J. Sullivan, Ph.D., et al, January 2015. ¹¹ Unitil "2013 Storm Resiliency Pilot Program Results – Addendum to the: Storm Resiliency Pilot Program 2012 Cost Benefit Analysis" January 24, 2014 Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 1 Page 4 of 7 Program, occurring in tandem with the vegetation management program. Including the pilot years, six years of storm resiliency work have been implemented to date. #### 2. Storm Resiliency Program Analysis The SRP's objective is to enhance the reliability of electric feeders out to the first protective device to support the concept of bringing "normalcy" back to the community as soon as possible after a storm event. It is the realization of this concept that we would like to explore further. As an initial matter, it's difficult to prove what might have happened had the Company not undertaken the SRP. However, by trending storm data over the past several years, there is sufficient empirical evidence to conclude that the program is meeting its stated objectives. Those objectives include: - Improve the reliability of treated circuits out to the first protected device - Reduce the cost of storms - Shorten restoration time - o Fewer resources needed to restore - Enhance customer relations by improving power availability during events that previously caused power interruptions Company has reviewed the biggest storm events to impact New Hampshire over the past 7 years (see Chart 1). The data shows a decline in resources needed and thereby a decline in the overall cost of the restoration. The Company is of the opinion that there is a break point as how fast restoration can occur after the onset of an event, given the activities that have to be performed prior and during restoration such as the public safety phase. The Company believes, however, that restoration times in general have been reduced by approximately 1-2 days such that the type of storms that would have formerly taken 5-6 days to recover from are now are being restored in 4-5 days. The key is that we can now restore with fewer resources as a result of fewer damage locations related to trees, a direct result of the SRP. Chart 1 Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 1 Page 5 of 7 In addition to the cost and resource trends in major storms, there is evidence of decline in outages under normal conditions and as a result of minor storms. This can be seen by studying the sections of circuit where the SRP has been performed. The Company compared Pre-SRP (year SRP performed and previous 4 years) and Post-SRP (years after SRP – varies from 5 to 1 depending on the circuit) "tree related" outages on all SRP circuit sections. The areas where SRP ground-to-sky and intensive hazard tree removal were completed had a 74% reduction in tree related outages per year, and a 99.9% reduction in outages per mile per year. See Table 1 below. There were only 15 outages on Post-SRP areas compared to 554 tree-related events in this time period. Outages on the ground-to-sky portions of SRP circuits Post-SRP accounted for only 2.7% of the tree related outages on the SRP circuit over the same time period, versus 7.5% (152 of 2,031) tree related outages for the five years prior to the SRP being performed. Table 1 Areas of Ground to Sky – Not Including "Major Events" | | PRE-SRP | POST-SRP | % Reduction | |--|-----------|----------|-------------| | Outages Per Circuit Per Year | 1.23 | 0.32 | 74% | | Outages Per Mile Per Year | 0.3107 | 0.0002 | 99.9% | | Average Customer Minutes of Interruption per year | 1,795,684 | 669,883 | 63% | | Average Customer
Minutes of Interruption per year per mile | 368,527 | 108,819 | 71% | ¹² Excluding major events and sub-transmission data Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 1 Page 6 of 7 In major events, the reduction in outages is not quite as pronounced, due to the lack of data being collected during storm events, and lack of opportunity to collect the data. Without data showing locations of tree-related trouble, an outage affecting a large amount of customers Pre-SRP could be related to numerous cases of tree damage, and that same outage Post-SRP could be related to only one case of tree damage. However, both events appear as a similar, single outage on the circuit. Setting aside discrepancies in the outage data, attempting to compare Pre-SRP major events and Post-SRP major events is difficult due to the fact that in many of the events, individual outage data (or even circuit level data) is not available. The February 25, 2010 wind storm, August 28, 2011 Hurricane Irene, October 31, 2011 Nor'easter, and October 29, 2012 Sandy do not have outage data for comparison. In these events it was not feasible to collect individual outage data. Perhaps the ability to be able to collect circuit and outage level data in recent major events, such as the October 29, 2017 wind storm, speaks to the reduction in trouble locations and damage on the system due to SRP efforts. At the present, the best measure of SRP effectiveness in a storm can be seen in a reduction of the overall storm restoration duration and the number of resources required shown in Chart 1. #### 3. Storm Resiliency Program Proposal Due to the positive impact the SRP has had on major storm event resources, restoration, and cost, the Company is proposing to accelerate the program. The original SRP plan was for a 10 year time frame, which put the initial cycle of SRP wrapping up in 2021. The Company is proposing to accelerate the plan by one year, completing an additional one-third mileage during 2018, 2019, and 2020. This would increase spending by \$474,333 for these three years, bringing the total SRP spend for each of these years to \$1,897,333. This would have a minimal bill impact on a per customer basis, as an average customer would see an increase of only \$0.24. By using the outage per mile per year results seen to date (Table 1 above), the impact of accelerating the SRP work can be estimated, for the actual areas and customers in the acceleration circuits. We have seen a reduction in outages per mile per year of 99%. If we accelerate 13.6 miles of work in 2018, as proposed, and see the average reduction in outage of 99%, using the past five year history we would expect to reduce the outages on these two circuits by anywhere from 1 to 2 outages, reducing customer interruptions anywhere from 1,073 to 1,273 customer interruptions, and reducing customer minutes of interruption from 53,604 to 64,604 CMI for the acceleration portion only. There are 2,015 customers served on these two circuits that would see an improvement in their reliability two years in advance. In 2019, we would expect to see a similar reduction in outages and customer interruptions, including the additional accelerated miles in 2019 – bringing the estimated reduction in outages per mile to 3, reducing customer interruptions by an estimate of 2,546 and customer-minutes of interruption by as much as 129,208 for the accelerated circuits in 2018 and 2019 only. Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 1 Page 7 of 7 In 2020, again the impact of the past two years of acceleration would be realized, plus the additional final year of acceleration, bringing the reduction in outages to an estimate of 4 to 5 outages avoided on the SRP acceleration circuits. The estimated customer impact of the acceleration project in 2020 is estimated to be 3,819 customer interruptions avoided and as much as 193,812 customer-minutes of interruption avoided. Over all three years of the acceleration project, a total estimated reduction of 6 outages could be realized, equating to a customer impact of 7,638 customer interruptions and 687,624 customer minutes of interruption avoided years in advance, on the accelerated circuits. #### 4. Conclusion Unitil embarked on a Storm Pilot Program in 2012 and 2013 in response to the increasing trend of costly and devastating storm events and the need to shorten the response time and event duration. The initial success of the targeted vegetation pilot and anticipated future savings and economic benefits to customers led to approval of the continuance of storm pilot work as an annual Storm Resiliency Program. The Company has seen a clear decline in resources needed in major storms, and a decline in the overall cost of restoration since the SRP program has been in effect. While difficult to quantify, the customer impact of shorter duration events, or the avoidance of events, has been the biggest benefit. The ability to return to normal service conditions more quickly after an event, and allow affected customers to get back to school and to work, and minimize the economic impact that storm events have on customer's lives is the real benefit. Accelerating the SRP program will bring that benefit more quickly to more customers. Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Attachment 2 UES – Capital Reliability Study 2017 Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 1 of 21 # Unitil Energy Systems - Capital Reliability Study 2017 Prepared By: Tyler Glueck Unitil Service Corp. Feb 7, 2018 Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 2 of 21 | <u>1.</u> | EXECUTIVE SUMMARY | 3 | |-------------|---|----| | <u>2.</u> | RELIABILITY GOALS | 3 | | _ | OUTAGES BY CAUSE | | | _ | 10 WORST DISTRIBUTION OUTAGES | | | | <u> </u> | | | _ | SUB-TRANSMISSION LINE AND SUBSTATION OUTAGES | | | <u>6.</u> | WORST PERFORMING CIRCUITS | 7 | | 6 .1 | | 8 | | 6.2 | | | | 6.3 | | | | <u>7.</u> | TREE RELATED OUTAGES IN THE PAST YEAR (1/1/16-12/31/16) | 11 | | <u>8.</u> | FAILED EQUIPMENT IN THE PAST YEAR | 12 | | | MULTIPLE DEVICE OPERATIONS IN THE PAST YEAR (1/1/15-12/31/15) | | | <u>9.</u> | | | | <u>10.</u> | OTHER CONCERNS | | | 10 | 1.1. NARROW SUBTRANSMISSION ROW EXPANSION | 16 | | 10 | 13.8KV UNDERGROUND ELECTRIC SYSTEM DEGRADATION | | | 10 | 3. ALTERNATE MAINLINE FOR LARGE 34.5KV CIRCUITS | 17 | | 10 | .4. ONE BOLT CONNECTOR REPLACEMENT | | | 10 | URD'S UTILIZING DIRECT BURIED CABLE OF 1970'S VINTAGE | 17 | | 10 | 6. SINGLE PHASE UNDERGROUND LOOP-FEED AT COURT ST | 18 | | <u>11.</u> | RECOMMENDED RELIABILITY IMPROVEMENT PROJECTS | 18 | | 11 | .1. CIRCUIT 18W2: INSTALL RECLOSERS IN BOTH DIRECTIONS OUT OF BOW BOG SUBSTATION | 18 | | _ | 11.1.1. Identified Concerns | | | | 11.1.2. Recommendations | | | | 2. CIRCUIT 18W2: INSTALL FUSE IN BLEVENS RD TAP. | | | _ | 11.2.1. Identified Concerns | | | | 11.2.2. Recommendations. | | | | .3. CIRCUIT 18W2: REPLACE LOW-SIDE STEP-DOWN FUSE WITH RECLOSER ON SMITH-SANBORN RD | | | | 11.3.1. Identified Concern. | | | | 11.3.2. Recommendation | | | | .4. CIRCUIT 13W3: REPLACE NORTH WATER ST FUSE WITH SECTIONALIZER | 19 | | | 11.4.1. Identified Concern | | | | 11.4.2. Recommendation | | | | 5. BUILD CIRCUIT-TIE BETWEEN 8X3 AND 8X5 | | | | 11.5.1. Identified Concern | | | | 11.5.2. Recommendation | | | | 6. MISCELLANEOUS CIRCUIT IMPROVEMENTS TO REDUCE RECURRING OUTAGES | | | | 11.6.1. Identified Concerns & Recommendations | | | | | | | <u>12.</u> | <u>CONCLUSION</u> | 21 | Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 3 of 21 #### **Executive Summary** The purpose of this document is to report on the overall reliability performance of the UES-Capital system from January 1, 2016 through December 31, 2016. The scope of this report will also evaluate individual circuit reliability performance over the same time period. The outage data from the following storm has been excluded from these analyses: July '16 wind/thunder storm from 07/23/2016 00:00 to 07/24/2016 00:00. The following projects are proposed from the results of this study and are focused on improving the worst performing circuits as well as the overall UES-Capital system reliability. These recommendations are provided for consideration and will be further developed with the intention to be incorporated into the 2018 budget development process. | Circuit / Line /
Substation | Proposed Project | Cost (\$) | |--------------------------------|---|-----------| | 8X3 | Install Fuse Saver on Lane Rd. | \$9,000 | | 22W3 | Install Sectionalizers on Birchdale Rd. | \$10,000 | | BOW
JUNCITON | Install an Auto-Transfer Scheme | \$100,000 | | 396 LINE | Install and Auto Sectionalizing scheme | \$40,000 | Note: estimates do not include general construction overheads #### **Reliability Goals** The annual corporate system reliability goals for 2016 were set at 176-151-126 SAIDI minutes. These were developed through benchmarking Unitil system performance with surrounding utilities. Individual circuits will be analyzed based upon circuit SAIDI, SAIFI, and CAIDI. Analysis of individual circuits along with analysis of the entire Capital system is used to identify future capital improvement projects and/or operational enhancements which may be required in order to achieve and maintain these goals. Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 4 of 21 #### **Outages by Cause** This section provides a breakdown of all outages by cause code
experienced during 2016. Chart 1 lists the number of interruptions, and the percent of total interruptions, due to each cause. For clarity, only those causes occurring more than 5 times are labeled. Chart 2 details the percent of total customer-minutes of interruption due to each cause, only those causes contributing greater than 2% of the total are labeled. Chart 1 Number of Interruptions by Cause Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 5 of 21 Chart 2 Percent of Customer-Minutes of Interruption by Cause Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 6 of 21 #### **10 Worst Distribution Outages** The ten worst distribution outages ranked by customer-minutes of interruption during the time period from January 1, 2016 through December 31, 2016 are summarized in Table 1 below. Table 1 Worst Ten Distribution Outages | Worst Tell Distribution Outages | | | | | | | | | |---------------------------------|---|------------------------|--------------------------|-------|-------|--|--|--| | Circuit | Date/Cause | Customer Interruptions | Cust-Min of Interruption | SAIDI | SAIFI | | | | | C4X1 | 10/27/2016
Vehicle Accident | 2,638 | 181,571 | 6.04 | 0.088 | | | | | C22W3 | 07/09/2016
Vehicle Accident | 1,608 | 148,318 | 4.94 | 0.054 | | | | | C15W1 | 07/26/2016
Tree/Limb Contact - Broken Trunk | 1,299 | 87,712 | 2.92 | 0.043 | | | | | C21W1A | 06/15/2016
Equipment Failure Company | 282 | 78,114 | 2.6 | 0.009 | | | | | C4X1 | 07/29/2016
Vehicle Accident | 282 | 70,782 | 2.36 | 0.009 | | | | | C2H2 | 10/09/2016
Vehicle Accident | 389 | 68,757 | 2.29 | 0.013 | | | | | C16X4 | 04/15/2016
Civil Emergency (fire,flood,etc.) | 1,063 | 60,733 | 2.02 | 0.035 | | | | | C13W3 | 11/27/2016
Patrolled, Nothing Found | 675 | 59,376 | 1.98 | 0.022 | | | | | C13W1 | 06/26/2016
Squirrel | 282 | 56,400 | 1.88 | 0.009 | | | | | C13W3 | 01/04/2016
Equipment Failure Company | 282 | 47,088 | 1.57 | 0.009 | | | | Note: This table does not include substation, sub-transmission or scheduled planned work outages. #### **Sub-transmission Line and Substation Outages** This section describes the contribution of sub-transmission line and substation outages on the UES-Capital system from January 1, 2016 through December 31, 2016. All substation and sub-transmission outages ranked by customer-minutes of interruption during the time period from January 1, 2016 through December 31, 2016 are summarized in Table 2 below. Table 3 shows the circuits that have been affected by sub-transmission line outages. The table illustrates the contribution of customer minutes of interruption for each circuit affected by a sub-transmission outage. Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 7 of 21 Table 2 Sub-transmission and Substation Outages | Line/Substation | Date/Cause | Customer
Interruptions | Cust-Min of Interruption | SAIDI | SAIFI | |----------------------------|--|---------------------------|--------------------------|-------|-------| | Line 33 | 06/02/2016
Operator Error/System
Malfunction | 1,178 | 24,131 | 0.80 | 0.039 | | Bow Junction
Substation | 07/10/2016
Squirrel | 1,721 | 296,879 | 9.88 | 0.057 | | Line 396X1 | 10/06/2016
Action by Others | 1,136 | 90,685 | 3.02 | 0.038 | Table 3 Contribution of Sub-transmission and Substation Outages | Circuit | Substation / Transmission
Line Outage | Cust-Min of Interruption | % of Total
Circuit
CMI | Circuit
SAIDI
Contribution | Number
of
Events | |---------|--|--------------------------|------------------------------|----------------------------------|------------------------| | C33X3 | Line 33 | 21 | 100% | 21.13 | 1 | | C33X4 | Line 33 | 1,372 | 100% | 20.18 | 1 | | C33X5 | Line 33 | 63 | 100% | 15.71 | 1 | | C33X6 | Line 33 | 20 | 100% | 4.10 | 1 | | C6X3 | Line 33 | 22,655 | 89% | 20.28 | 1 | | C7W3 | Bow Junction Substation | 230,728 | 93% | 254.11 | 1 | | C7W4 | Bow Junction Substation | 66,151 | 86% | 84.92 | 1 | | C17X1 | Line 396X1 | 40 | 100% | 20.00 | 1 | | C18W2 | Line 396X1 | 90,645 | 49% | 75.79 | 1 | #### **Worst Performing Circuits** This section compares the reliability of the worst performing circuits using various performance measures. All circuit reliability data presented in this section includes subtransmission or substation supply outages unless noted otherwise. Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 8 of 21 #### **Worst Performing Circuits in Past Year** A summary of the worst performing circuits during the year of 2016 is included in the tables below. Table 4 shows the ten worst circuits ranked by the total number of Customer-Minutes of interruption. The SAIFI and CAIDI for each circuit are also listed in this table. Table 5 provides detail on the major causes of the outages affecting these circuits. Customer-minutes of interruption are given for the six most prevalent causes during 2016. Circuits having one outage contributing more than 75% of the Customer-Minutes of interruption were excluded from this analysis. Table 4 Worst Performing Circuits by Customer-Minutes | | | VOISE I CITOTIII | mg chicante i | | | | | |---------|---------------------------|--------------------------|--------------------------|---------------------------|--------|-------|-------| | Circuit | Customer
Interruptions | Worst Event
(% of CI) | Cust-Min of Interruption | Worst Event
(% of CMI) | SAIDI | SAIFI | CAIDI | | C4X1 | 3,287 | 80% | 276,811 | 66% | 146.38 | 1.738 | 84.21 | | C21W1A | 1,130 | 25% | 252,669 | 31% | 892.82 | 3.993 | 223.6 | | C22W3 | 2,385 | 67% | 215,821 | 69% | 136.51 | 1.509 | 90.49 | | C13W3 | 2,143 | 27% | 186,166 | 24% | 117.09 | 1.348 | 86.87 | | C18W2 | 2,386 | 48% | 185,878 | 49% | 155.42 | 1.995 | 77.9 | | C8X3 | 2,205 | 9% | 177,913 | 12% | 62.34 | 0.773 | 80.69 | | C15W1 | 1,930 | 67% | 147,366 | 60% | 147.96 | 1.938 | 76.36 | | C13W1 | 880 | 55% | 69,392 | 44% | 140.76 | 1.785 | 78.86 | | C4W3 | 797 | 19% | 65,268 | 32% | 47.5 | 0.58 | 81.89 | | C4W4 | 716 | 43% | 37,756 | 44% | 16.49 | 0.313 | 52.73 | Note: all percentages and indices are calculated on a circuit basis Table 5 Circuit Interruption Analysis by Cause | | | Customer-Minutes of Interruption / # of Outages | | | | | | | | | |---------|---------------------|---|-------------------------------|---|--|---------------------------------|--|--|--|--| | Circuit | Vehicle
Accident | Squirrel | Scheduled,
Planned
Work | Tree/Limb
Contact -
Broken
Trunk | Tree/Limb
Contact -
Broken
Limb | Equipment
Failure
Company | | | | | | C4X1 | 250,327 / 2 | 0/0 | 260 / 2 | 75 / 1 | 6,463 / 3 | 9,741 / 3 | | | | | | C21W1A | 0/0 | 0/0 | 181,887 / 5 | 0/0 | 0/0 | 70,782 / 1 | | | | | | C22W3 | 148,633 / 2 | 10,265 / 12 | 2,620 / 4 | 7,536 / 2 | 24,281 / 8 | 8,492 / 3 | | | | | | C13W3 | 36,311 / 4 | 13,035 / 15 | 70 / 1 | 22,734 / 9 | 11,126 / 13 | 30,807 / 8 | | | | | | C18W2 | 818 / 1 | 24,043 / 15 | 224/3 | 10,325 / 1 | 25,814 / 7 | 1,182 / 3 | | | | | Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 9 of 21 | C8X3 | 586 / 3 | 50,500 / 26 | 1,320 / 4 | 22,866 / 9 | 38,686 / 25 | 8,304 / 4 | |-------|------------|-------------|-----------|------------|-------------|-----------| | C15W1 | 21,382 / 1 | 14,860 / 5 | 0/0 | 87,917 / 2 | 22,613 / 5 | 544 / 1 | | C13W1 | 0/0 | 33,222 / 6 | 2,927 / 2 | 20,553 / 7 | 2,759 / 4 | 871 / 1 | | C4W3 | 0/0 | 11,777 / 3 | 550 / 3 | 4,881 / 1 | 33,402 / 3 | 7,946 / 5 | | C4W4 | 0/0 | 11,630 / 7 | 1,195 / 6 | 16,782 / 2 | 2,523 / 2 | 3,780 / 3 | #### **Worst Performing Circuits of the Past Five Years (2012 – 2016)** The annual performance of the ten worst circuits in terms of SAIDI and SAIFI for the past five years is shown in the tables below. Table 6 lists the ten worst circuits ranked by SAIDI performance. Table 7 lists the ten worst performing circuits ranked by SAIFI. The data used in this analysis includes all system outages except those outages that occurred during the 2016 July wind/thunder storm, 2014 November Cato Snowstorm, and 2012 Hurricane Sandy. Table 6 Circuit SAIDI | Circuit | 2016 | | 201 | 15 | 20 | 14 | 20 | 13 | 20 | 12 | |-------------------|---------|--------|---------|--------|---------|--------|---------|---------|---------|--------| | Ranking (1=worst) | Circuit | SAIDI | | 1 | C21W1A | 892.82 | C21W1A | 803.71 | C15W2 | 794.83 | C16H1 | 1524.26 | C13W2 | 817.42 | | 2 | C7W3 | 272.49 | C34X2 | 399.45 | C22W3 | 729.57 | C375X1 | 1018 | C13W1 | 425.04 | | 3 | C34X2 | 244.8 | C13W3 | 357.44 | C35X1 | 573.63 | C37X1 | 861.07 | C211P | 381.91 | | 4 | C37X1 | 176.22 | C375X1 | 318.05 | C24H1 | 570.48 | C13W2 | 744.95 | C211A | 270 | | 5 | C18W2 | 155.42 | C14H2 | 288.1 | C24H2 | 545.14 | C13W1 | 739.74 | C8X3 | 244.17 | | 6 | C15W1 | 147.96 | C16X4 | 281.37 | C22W1 | 534.36 | C16X5 | 720.5 | C18W2 | 223.12 | | 7 | C4X1 | 146.38 | C16H1 | 281.3 | C22W2 | 512.65 | C8X3 | 708.72 | C7W3 | 193.84 | | 8 | C13W1 | 140.76 | C7W3 | 281.18 | C15W1 | 499.87 | C13W3 | 609.67 | C34X2 | 165 | | 9 | C22W3 | 136.51 | C16H3 | 280.82 | C7W3 | 444.56 | C24H1 | 524.03 | C15W1 | 152.67 | | 10 | C13W3 | 117.09 | C16X5 | 280.05 | C38W | 441.97 | C18W2 | 521.3 | C15W2 | 135.36 | Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 10 of 21 #### Table 7 Circuit SAIFI | Circuit | 201 | 2016 | | 5 | 20 | 14 | 20 | 13 | 201 | 2 |
-------------------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------| | Ranking (1=worst) | Circuit | SAIFI | | 1 | C21W1A | 3.993 | C21W1A | 6.356 | C24H1 | 7.143 | C13W2 | 7.068 | C13W2 | 9.52 | | 2 | C37X1 | 2.418 | C16X4 | 5.023 | C24H2 | 6.987 | C16X5 | 5.5 | C13W1 | 4.858 | | 3 | C18W2 | 1.995 | C16H1 | 5.02 | C15W2 | 6.597 | C37X1 | 5.412 | C21W1P | 3.037 | | 4 | C15W1 | 1.938 | C16X5 | 5 | C22W3 | 5.832 | C13W1 | 5.405 | C7W3 | 2.458 | | 5 | C13W1 | 1.785 | C16X6 | 5 | C3H1 | 4.251 | C22W3 | 4.849 | C18W2 | 2.386 | | 6 | C1X7P | 1.778 | C375X1 | 5 | C22W1 | 4.034 | C4W3 | 4.574 | C6X3 | 2.283 | | 7 | C4X1 | 1.738 | C16H3 | 4.998 | C38W | 4.022 | C13W3 | 4.547 | C8X3 | 2.25 | | 8 | C22W3 | 1.509 | C7W3 | 4.85 | C22W2 | 4 | C7W3 | 4.547 | C15W1 | 2.053 | | 9 | C7W3 | 1.396 | C13W3 | 4.567 | C7W3 | 3.982 | C18W2 | 4.337 | C22W1 | 2 | | 10 | C13W3 | 1.348 | C18W2 | 4.127 | C14X3 | 3.5 | C16H1 | 4.12 | C13W3 | 1.834 | #### Improvements to Worst Performing Circuit (2014-2016) Projects completed from 2014 to 2017 that are expected to improve the reliability of the worst performing circuits are included in table 8 below. Table 8 Improvements to Worst Performing circuits | Circuits | Year of Completion | Project Description | |----------|--------------------|--| | 21W1A | 2016 | Completed work to allow energized transfer for planned work (added cable, added junctions, moved switchgear) | | 21017 | 2010 | Replaced fault indicator system | | | 2014 | Forestry Review | | 15W1 | 2015 | Cycle Pruning / Hazard Tree Mitigation | | | 2016 | New Hydraulic Recloser Installation | | | 2014 | Forestry Review / Installed Animal Guards in problem areas | | 18W2 | 2015 | Fuse Addition / Sectionalizer Installations | | | 2016 | Cycle Pruning | | 474 | 2014 | Fuse Changes/Additions | | 4X1 | 2014 | Cutout Replacements | | 22W3 | 2014 | Forestry Review / Installed Animal Guards in problem area | | Circuits | Year of Completion | Project Description | | |------------------------|--------------------|--|--| | | 2015 | Cycle Pruning / Hazard Tree Mitigation / Installed Animal Guards in problem areas / Fuse savings implemented in problem areas | | | 13W3 | 2014 | Hazard Tree Mitigation / Mid Cycle Review | | | 37X1 | 2014 | Fuse Changes/Additions | | | 13W1 | 2014 | Cycle Pruning | | | 13001 | 2015 | Fuse Changes/Additions | | | 8X3 | 2015 | Hazard Tree Mitigation / SRP / Mainline One Bolt Connectors Replaced / Replaced Insulators that are well known for higher than normal failure rate / Fuse Addition | | | | 2016 | Sectionalizer Installation | | | 7W3 | 2015 | Cycle Pruning / Hazard Tree Mitigation | | | 375 Line ¹³ | 2015 | Cycle Pruning / Clearing zone expanded | | | | 2016 | ROW tree clearing zone expanded | | #### Tree Related Outages in the Past Year (1/1/16-12/31/16) This section summarizes the worst ten performing circuits by tree related outages during 2016. Table 9 shows the ten worst circuits ranked by the total number of Customer-Minutes of interruption caused by tree related faults on the circuit. The number of customer-interruptions and number of outages are also listed in this table. Circuits having less than three outages were excluded from this table. All streets on the Capital System with three or more tree related outages are shown in Table 10 below. The table is sorted by number of outages and customer-minutes of interruption and does not include major events. $^{^{13}}$ The 375 Line work will improve reliability performance on 16H1,16H3, 16X4, 16X5, 16X6 and 375X1 Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 12 of 21 Table 9 Worst Performing Circuits – Tree Related Outages | Worst i criorining Oricults Tree Related Odtages | | | | |--|--|---------------------------------------|-------------------------| | Circuit | Customer
Minutes of
Interruption | Number of
Customers
Interrupted | No. of
Interruptions | | C15W1 | 110,529 | 1,628 | 7 | | C8X3 | 81,508 | 1,033 | 38 | | C13W3 | 54,011 | 542 | 29 | | C22W3 | 38,883 | 434 | 11 | | C4W3 | 38,283 | 398 | 4 | | C18W2 | 36,192 | 414 | 9 | | C13W1 | 29,551 | 299 | 15 | | C4W4 | 19,305 | 355 | 4 | | C4X1 | 15,877 | 124 | 5 | | C37X1 | 10,456 | 155 | 4 | Table 10 Multiple Tree Related Outages by Street | Circuit | Street, Town | # Outages | Customer-
Minutes of
Interruption | Number of
Customer
Interruptions | |---------|--------------------------|-----------|---|--| | C13W3 | North Water St, Boscawen | 6 | 10,100 | 114 | | C13W1 | Morrill Rd, Canterbury | 4 | 7,758 | 120 | | C8X3 | New Orchard Rd, Epsom | 3 | 8,097 | 83 | #### Failed Equipment in the Past Year This section is intended to clearly show all equipment failures throughout the year of 2016. Chart 3 shows all equipment failures throughout the study period. Chart 4 shows each equipment failure as a percentage of the total failures within this same study period. Chart 5 shows the top four types of failed equipment within the study period with five years of historical data. Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 13 of 21 Chart 3 Equipment Failure Analysis by Cause Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 14 of 21 Chart 4 Equipment Failure Analysis by Percentage of Total Failures Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 15 of 21 Chart 5 Annual equipment failures by category (top four) Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 16 of 21 #### **Multiple Device Operations in the Past Year (1/1/15-12/31/15)** Table 11 below is a summary of the devices that have operated three or more times in 2016. All exclusionary events are removed in this table. Table 11 Multiple Device Operations | Circuit | Number of
Operations | Device | Customer
Minutes | Customer Interruptions | |---------|-------------------------|---|---------------------|------------------------| | C8X3 | 7 | Fuse, Pole 11, Old Town Rd, Epsom | 7,638 | 119 | | C18W2 | 5 | Fuse, Pole 34, Putney Rd, Bow | 11,487 | 165 | | C22W3 | 4 | Fuse, Pole 1, Rocky Point Dr, Bow | 8,534 | 120 | | C8X3 | 4 | Fuse, Pole 1, Smith Sanborn Rd, Chichester | 21,009 | 308 | | C13W3 | 3 | Fuse, Pole 1, North Water St, Boscawen | 9,863 | 111 | | C13W3 | 3 | Fuse, Pole 10, Terrace Hill Rd, Boscawen | 2,465 | 48 | | C18W2 | 3 | Fuse, Pole 1, Allen Rd, Bow | 19,369 | 283 | | C8X3 | 3 | Fuse, Pole 16, Highland Dr, Chichester | 3,341 | 30 | | C15W1 | 3 | Fuse, Pole 65, East Side Dr, Concord | 6,710 | 114 | | C4W4 | 3 | Trans. Breaker, Pole 10, Hutchins St, Concord | 1,924 | 23 | | C4W3 | 3 | Fuse, Pole 158, Mountain Rd, Concord | 975 | 9 | | C21W1A | 3 | Recloser, Substation, Storrs St, Concord | 174,270 | 846 | #### **Other Concerns** This section is intended to identify other reliability concerns that would not necessarily be identified from the analysis above. #### Narrow subtransmission ROW expansion The UES-Concord subtransmission system has some areas where the Right Of Way (ROW) is narrow, thus, even after pruning trees to the edge of the ROW we leave our system vulnerable to damage by falling trees. Historically, Unitil has experienced noticeably more outages, due to falling trees, on lines that are in narrow ROW in comparison to lines in larger ROW. Unitil has been able to successfully expand ROW tree lines in 2015 and will continue these efforts in 2016. This effort is expected to allow effective tree mitigation in the problem areas. #### 13.8kV Underground Electric System Degradation The 13.8kV underground electric system has been experiencing connector and conductor failures at an average rate of 0.8 per year for the last 5 years. This does Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 17 of 21 not include scheduled replacement of hot terminations identified by inspection; hot terminations have been identified and replaced regularly, without causing outage. In 2015, a study on this system was completed. It identified age and use of 200A connectors may be a contributing factor to failures. Energized transfer capability is being built into this underground system to reduce the number of outages experienced by customers, during equipment replacement. #### **Alternate Mainline for Large 34.5kV Circuits** Circuit 8X3 has the largest customer exposure on the capital system at 2,764 customers with an 11.5MVA peak, in 2014. This circuit has no alternate feeds to restore customers during mainline outages. Building an alternate mainline to reduce customer exposure and allow an alternate feed during contingency scenarios is the ultimate goal for this area. Three alternatives where reviewed. One involved constructing a pole line outside of UES territory, one involved double circuiting, and the final involved rebuilding Horse Corner Rd. The Horse Corner Rd route is preferred because it will create an alternate pole line and does not involve joint construction with Eversource. #### **One Bolt Connector Replacement** One bolt connectors on primary conductor are required to be installed on stirrups, by existing construction standards. Surveys have found many one bolt connectors installed directly on primary conductor. It has
been found that stranded conductor can become damaged by single bolt connectors directly connected, reducing the conductor's thermal and mechanical strength. This damage has been found to be most drastic on 34.5kV energized conductor. Due to recent outages and noticeable damage found on 34.5kV circuits, it has become a priority to replace these connectors on 34.5kV energized mainline. Significant work was done in 2015 to mitigate this problem on circuits 6X3, 7X1, 8X5 and 8X3. Work is planned to continue on circuits 8X5 and 8X3 in 2016. #### **URD's Utilizing Direct Buried Cable of 1970's vintage** Direct buried cable URD's are failing at an increasing rate, about 1-3 failures per year as of 2015. When a direct buried cable fails, Unitil splices a small section of new cable into the run of aged cable. The remaining aged cable in that area is just as susceptible to failure, so additional failures persist more frequently. When cable in conduit fails, entire runs of cable are replaced, preventing this issue. This can't be done easily for direct buried due to cost and digging permissions. Some options to help mitigate this problem: one is to improve dielectric strength of existing cable with cable injection; two is to reduce the operating voltage of a URD and three replace runs of direct buried cable with conduit and new conductor. Option one and two are not ideal because aged direct buried cable typically has other concerns such as a Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 18 of 21 degrading neutral. Option three is preferred and is being done now but it is expensive and requires implementing multiyear plans to reduce the impact of this cost. #### Single Phase Underground Loop-Feed at Court St #### **Identified Concern** The single-phase underground cable at Court St that is used as a redundant feed for several customers on North State St is left un-energized because it doesn't normally feed customers. There is a concern that if there is a fault on this section of cable, it could take out Circuit 21W1A. With the cable left un-energized, we wouldn't know if there was a problem with the cable until it was energized. #### Recommendation Install an interrupter in the single phase loop out of MH22. #### **Recommended Reliability Improvement Projects** This following section describes recommendations on circuits, sub-transmission lines and substations to improve overall system reliability. The recommendations listed below will be compared to the other proposed reliability projects on a system-wide basis. A cost benefit analysis will determine the priority ranking of projects for the 2018 capital budget. All project costs are shown without general construction overheads #### Circuit 18W2: Install Reclosers in Both Directions out of Bow Bog Substation #### **Identified Concerns** Circuit 18W2 has been in the list of 10 worst circuits in regards to SAIDI and SAIFI for three of the last five years. In the past five years since 2012, the 18W2 recloser has operated four times due to faults on the mainline. #### Recommendations Install a Recloser in Northern Direction out of Bow Bog Substation Estimated Project Cost (without construction overheads): \$ 64,000 Estimated Annual Savings – Customer Minutes: 43,804, Customer Interruptions: 674 Install a Recloser in Southern Direction out of Bow Bog Substation and a Sectionalizer on Allen Rd. Estimated Project Cost (without construction overheads): \$ 68,000 Estimated Annual Savings – Customer Minutes: 4,616, Customer Interruptions: 71 Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 19 of 21 #### Circuit 18W2: Install Fuse in Blevens Rd Tap #### **Identified Concerns** The fuse a P.34 Putney Rd. in Bow had five operations in 2016. Three of the operations were due to squirrels. One was due to a broken limb and one was patrolled and nothing found. #### Recommendations Install a fuse in the Blevens Rd tap. Estimated Project Cost (without construction overheads): minimal Estimated Annual Savings – Customer Minutes: 256, Customer Interruptions: 4 #### Circuit 18W2: Replace Low-Side Step-Down fuse with Recloser on Smith-Sanborn Rd #### Identified Concern The fuse a P.1 Smith-Sanborn Rd. in Chichester had four operations in 2016. Two of the operations were due to squirrels. One was due to a broken limb and one was patrolled and nothing found. #### Recommendation Replace low-side step-down fuse with a 70A V4L hydraulic recloser and the hi-side fuse with a 65K fuse. Also, install fusing at the two unfused downline taps. Estimated Project Cost: \$12,000 Estimated Annual Savings – Customer Minutes of Interruption: 1,267, Customer Interruptions: 20 #### Circuit 13W3: Replace North Water St Fuse with Sectionalizer #### **Identified Concern** The fuse at P.1 North Water St. in Boscawen had three operations in 2016 that were all tree related. #### Recommendation Replace the fuse at P.1 North Water St. with a sectionalizer and install a fuse about half-way down the North Water St. tap. Estimated Project Cost: \$8,000 Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 20 of 21 Estimated Annual Savings – Customer Minutes of Interruption: 1,732, Customer Interruptions: 27 #### **Build Circuit-Tie Between 8X3 and 8X5** #### **Identified Concern** The fuse at P.1 North Water St. in Boscawen had three operations in 2016 that were all tree related. #### Recommendation Replace the fuse at P.1 North Water St. with a sectionalizer and install a fuse about half-way down the North Water St. tap. Estimated Project Cost: \$8,000 Estimated Annual Savings – Customer Minutes of Interruption: 1,732, Customer Interruptions: 27 #### Miscellaneous Circuit Improvements to Reduce Recurring Outages #### **Identified Concerns & Recommendations** The following concerns were identified based on a review of Tables 10 & 11 of this report; Multiple Tree Related Outages by Street and Multiple Device Operations respectively. #### **Mid-Cycle Forestry Reviews** The areas identified below experienced three or more tree related outages in 2016. It is recommended that a forestry review of these areas be performed in 2017 in order to identify and address any mid-cycle growth or hazard tree problems. - C13W3, North Water Street, Boscawen - C13W1, Morrill Road, Canterbury - C8X3, New Orchard Road, Epsom Unitil Energy Systems, Inc. Reliability Program Vegetation Management Program Annual Report2017 Attachment 2 Page 21 of 21 #### **Animal Guard Installation Recommendations** The area identified below experienced three or more patrolled nothing found / animal outages in 2016. It is recommended that an animal protection review is performed in 2017 in order to identify locations in which animal protection can prevent outages due to animals. - C8X3, Old Town Road, Epsom - C18W2, Putney Road, Bow - C8X3, Hillview Drive, Chichester - C8X3, Smith Sanborn Road, Chichester - C13W3, Terrace Hill Road, Boscawen #### Conclusion During 2015, tree related outages still present the largest problem in the UES-Capital System, compared to other causes. Although compared to previous years, the worst performing circuits have seen a dramatic decrease in Customer Minutes of Interruption from tree related outages. Enhanced tree trimming efforts are still being implemented, which is expected to improve reliability for most of the worst performing circuits identified in this study. Motor Vehicle Accidents have caused about 3 times as many customer minutes of interruption, in 2015, as the two previous years. This cause will be reviewed next year to determine if this elevated level of interruption persists. Recommendations developed from this study are mainly focused on reducing the impact of multiple permanent outages and improving reliability of the sub transmission system. This report is also intended to assist Unitil Forestry in identifying areas of the system that are being frequently affected by tree related outages to allow proactive measures to be taken. In addition, new ideas and solutions to reliability problems are always being explored in an attempt to provide the most reliable service possible. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Attachment 3 **UES - Seacoast** Reliability Study 2017 Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 1 of 24 #### Unitil Energy Systems – Seacoast ### Reliability Study 2017 Prepared By: Jake Dusling Unitil Service Corp. August 21, 2017 Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 2 of 24 #### 1 Executive Summary The purpose of this document is to report on the overall reliability performance of the UES-Seacoast system from January 1, 2016 through December 31, 2016. The scope of this report will also evaluate individual circuit reliability performance over the same time period. The following projects are proposed from the results of this study and are focused on improving the worst performing circuits as well as the overall UES-Seacoast system reliability. These recommendations are provided for consideration and will be further developed with the intention to be incorporated into the 2018 budget development process. | Circuit / Line /
Substation | Proposed Project | Cost (\$) | |--------------------------------|--|-----------| | 13W2 | Replace V4L Reclosers and Relocate
Downline | \$225,000 | | 19X2/11X1/11X2 | Distribution Automation Scheme | \$190,000 | | 43X1 | Install Recloser – Exeter Road | \$75,000 | | 3346 Line | Automatic Restoration Scheme | \$160,000 | | 3347 Line Tap | Recloser Replacements | \$125,000 | |
Timberlane S/S | Installation of Motor Operated Switches with SCADA Control | \$30,000 | Note: estimates do not include overheads UES-Seacoast SAIDI was 94.80 minutes in 2016 after removing all Major Event Days. Chart 1 below shows UES-Seacoast SAIDI over the past five years. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 3 of 24 Chart 1 Annual UES-Seacoast SAIDI #### 2 Reliability Goals The annual corporate system reliability goals and UES-Seacoast reliability goals have been set at 175-143-111 SAIDI minutes and 128.3-110.6-92.9 SAIDI minutes, respectively. These were developed through benchmarking Unitil system performance with surrounding utilities. Individual circuits will be analyzed based upon circuit SAIDI, SAIFI, and CAIDI. Analysis of individual circuits along with analysis of the entire Seacoast system is used to identify future capital improvement projects and/or operational enhancements which may be required in order to achieve and maintain these goals. #### 3 Outages by Cause This section provides a breakdown of all outages by cause code experienced during 2016. Chart 2 lists the number of interruptions due to each cause. For clarity, only those causes occurring more than 10 times are labeled. Chart 3 details the percent of total customerminutes of interruption due to each cause. Only those causes contributing greater than 2% of the total are labeled. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 4 of 24 Chart 2 Number of Interruptions by Cause Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 5 of 24 Chart 3 Customer-Minutes of Interruption by Cause #### 4 10 Worst Distribution Outages The ten worst distribution outages ranked by customer-minutes of interruption during the time period from January 1, 2016 through December 31, 2016 are summarized in Table 1 below. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 6 of 24 Table 1 Worst Ten Distribution Outages | Circuit | Description
(Date/Cause) | No. of
Customers
Affected | No. of
Customer
Minutes | UES
Seacoast
SAIDI (min.) | UES
Seacoast
SAIFI | |---------|---|---------------------------------|-------------------------------|---------------------------------|--------------------------| | 7W1 | 10/31/16
Equipment Failure
Company | 1,213 | 451,054 | 9.69 | 0.026 | | 3Н3 | 2/3/16
Equipment Failure
Company | 1,061 | 253,091 | 5.44 | 0.023 | | 54X1 | 2/5/16
Tree/Limb Contact –
Broken Trunk | 1,457 | 149,755 | 3.22 | 0.031 | | 43X1 | 12/29/16
Tree/Limb Contact –
Broken Trunk | 1,862 | 140,053 | 3.01 | 0.040 | | 58X1 | 7/17/16
Tree/Limb Contact –
Broken Limb | 725 | 99,071 | 2.13 | 0.016 | | 58X1 | 9/4/16
Vehicle Accident | 569 | 92,557 | 1.99 | 0.012 | | 22X1 | 12/24/16
Patrolled, Nothing Found | 1,909 | 86,064 | 1.85 | 0.041 | | 21W2 | 10/28/16
Patrolled, Nothing Found | 692 | 78,277 | 1.68 | 0.015 | | 6W1 | 8/14/16
Tree/Limb Contact –
Broken Limb | 362 | 76,929 | 1.65 | 0.008 | | 13W2 | 6/12/16
Tree/Limb Contact –
Broken Trunk | 647 | 68,354 | 1.47 | 0.014 | Note: This table does not include outages that occurred at substations or on the subtransmission system or outages that occurred during excludable events. # 5 Subtransmission and Substation Outages This section describes the contribution of subtransmission line and substation outages on the UES-Seacoast system. All substation and subtransmission outages ranked by customer-minutes of interruption during the time period from January 1, 2016 through December 31, 2016 are summarized in Table 2 below. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 7 of 24 Table 3 shows the circuits that have been affected by subtransmission line and substation outages. The table illustrates the contribution of customer-minutes of interruption for each circuit affected. In aggregate, subtransmission line and substation outages accounted for 20% of the total customer-minutes of interruption for UES-Seacoast. Table 2 Subtransmission and Substation Outages | Trouble
Location | Description
(Date/Cause) | No. of
Customers
Affected | No. of
Customer
Minutes | UES
Seacoast
SAIDI (min.) | UES
Seacoast
SAIFI | |---------------------|---|---------------------------------|-------------------------------|---------------------------------|--------------------------| | 3345 Line | 7/23/16
Tree/Limb Contact – Broken Trunk | 3,224 | 499,472 | 10.73 | 0.069 | | 3356 Line | 2/5/16
Tree/Limb Contact – Broken Trunk | 5,776 | 376,614 | 8.09 | 0.124 | | 3343 Line | 7/23/16
Tree/Limb Contact – Broken Trunk | 3,299 | 332,900 | 7.15 | 0.071 | | 3343 Line | 4/5/16
Loose/Failed Connection | 3,687 ¹⁴ | 316,663 | 6.80 | 0.079 | _ ¹⁴ The 3343 line was in an abnormal configuration at the time of this outage. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 8 of 24 Table 3 Contribution of Subtransmission and Substation Outages | Circuit | Trouble
Location | Customer-
Minutes
of Interruption | % of Total
Circuit
Minutes | Circuit
SAIDI
Contribution | Number of Events | |---------|---------------------|---|----------------------------------|----------------------------------|------------------| | 13W1 | | 88,090 | 52.6% | 81.72 | 1 | | 13W2 | | 249,128 | 39.4% | 153.03 | 1 | | 13X3 | 2245 Line | 33,951 | 84.5% | 144.47 | 1 | | 5H1 | 3345 Line | 29,463 | 89.2% | 130.37 | 1 | | 5H2 | | 70,342 | 88.0% | 160.97 | 1 | | 5X3 | | 28,497 | 95.0% | 160.10 | 1 | | 21W1 | | 94,323 | 39.5% | 68.85 | 1 | | 21W2 | | 96,669 | 31.0% | 66.62 | 1 | | 56X1 | 3356 Line | 25,480 | 17.5% | 34.81 | 1 | | 56X2 | | 8,549 | 14.0% | 97.15 | 1 | | 58X1 | | 151,593 | 10.2% | 68.50 | 1 | **Contribution of Subtransmission and Substation Outages** | Circuit | Trouble
Location | Customer-
Minutes
of Interruption | % of Total
Circuit
Minutes | Circuit
SAIDI
Contribution | Number of Events | |---------|---------------------|---|----------------------------------|----------------------------------|------------------| | 27X1 | | 66,608 | 45.7% | 127.85 | 2 | | 27X2 | | 68,588 | 97.6% | 164.48 | 2 | | 43X1 | 3343 Line | 308,177 | 51.0% | 158.04 | 2 | | 28X1 | 3343 LITIE | 71,124 | 93.5% | 140.28 | 1 | | 54X1 | | 46,410 | 22.1% | 43.46 | 1 | | 54X2 | | 88,655 | 75.6% | 190.25 | 1 | Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 9 of 24 # **6 Worst Performing Circuits** This section compares the reliability of the worst performing circuits using various performance measures. All circuit reliability data presented in this section includes exclusionary events, subtransmission or substation supply outages unless noted otherwise. # 6.1 Worst Performing Circuits in Past Year (1/1/16 – 12/31/16) A summary of the worst performing circuits during the time period between January 1, 2016 and December 31, 2016 is included in the tables below. Table 4 shows the ten worst performing circuits ranked by the total number of customer-minutes of interruption. The SAIFI and CAIDI for each circuit are also listed in this table. Table 5 provides detail on the major causes of the outages on each of these circuits. Customer-minutes of interruption are given for the six most prevalent causes¹⁵. Circuits having one outage contributing more than 75% of the customer-minutes of interruptions were excluded from this analysis. _ ¹⁵ Six most prevalent causes determined from UES-Seacoast system wide data, not individual circuit data. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 10 of 24 Table 4 Worst Performing Circuits Ranked by Customer-Minutes | Troise i circining circuito Rainca by adotonio minates | | | | | | | | |--|---------------------------|--------------------------|-----------------------------|---------------------------|--------|-------|--------| | Circuit | Customer
Interruptions | Worst Event
(% of CI) | Cust-Min of
Interruption | Worst Event
(% of CMI) | SAIDI | SAIFI | CAIDI | | 58X1 | 6,056 | 36% | 1,489,819 | 36% | 673.21 | 2.737 | 246.01 | | 13W2 | 4,128 | 39% | 632,721 | 39% | 388.65 | 2.536 | 153.28 | | 43X1 | 7,603 | 29% | 604,154 | 27% | 309.82 | 3.899 | 79.46 | | 23X1 | 1,825 | 28% | 332,905 | 56% | 350.06 | 1.919 | 182.41 | | 21W2 | 3,832 | 37% | 311,342 | 31% | 214.57 | 2.641 | 81.25 | | 22X1 | 4,249 | 45% | 303,736 | 28% | 149.55 | 2.092 | 71.48 | | 6W2 | 1,555 | 59% | 251,486 | 39% | 274.55 | 1.698 | 161.73 | | 21W1 | 3,643 | 38% | 238,832 | 39% | 174.33 | 2.659 | 65.56 | | 6W1 | 1,593 | 33% | 217,101 | 35% | 247.83 | 1.818 | 136.28 | | 54X1 | 2,021 | 72% | 209,979 | 71% | 196.61 | 1.892 | 103.90 | Note: all percentages and indices are calculated on a circuit basis Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 11 of 24 Table 5 Circuit Interruption Analysis by Cause | | | Customer – Minutes of Interruption / # of Outages | | | | | | | | | | |---------|--|---|---------------------------------|--|--------------------------------|---------------------|--|--|--|--|--| | Circuit |
Tree/Limb
Contact -
Broken Trunk | Tree/Limb
Contact -
Broken Limb | Equipment
Failure
Company | Tree/Limb
Contact -
Uprooted
Tree | Patrolled,
Nothing
Found | Vehicle
Accident | | | | | | | 58X1 | 567,303 / 12 | 235,470 / 13 | 19,947 / 5 | 539,647 / 2 | 8,144 / 4 | 117,758 / 2 | | | | | | | 13W2 | 338,903 / 4 | 269,770 / 15 | 1,915 / 4 | 0/0 | 18,108 / 6 | 1,425 / 1 | | | | | | | 43X1 | 302,426 / 2 | 50,214 / 10 | 14,678 / 7 | 2,139 / 1 | 3,899 / 1 | 48,739 / 1 | | | | | | | 23X1 | 100,038 / 4 | 56,161 / 4 | 0/0 | 5,839 / 1 | 9,296 / 1 | 180 / 1 | | | | | | | 21W2 | 99,472 / 3 | 8,201 / 3 | 25,025 / 4 | 30,204 / 2 | 87,836 /2 | 34,637 / 1 | | | | | | | 22X1 | 83,749 / 5 | 43,696 / 13 | 48,629 / 6 | 0/0 | 86,064 / 1 | 41,434 / 2 | | | | | | | 6W2 | 2,704 / 1 | 186,876 / 12 | 100 / 1 | 0/0 | 1,412 / 2 | 0/0 | | | | | | | 21W1 | 94,365 / 2 | 136,093 / 13 | 2,386 / 3 | 0/0 | 1,498 / 1 | 0/0 | | | | | | | 6W1 | 52,927 / 6 | 146,284 / 7 | 52 / 1 | 375 / 1 | 540 / 3 | 6,478 / 1 | | | | | | | 54X1 | 149,755 / 1 | 5,253 / 6 | 0/0 | 0/0 | 8,141 / 1 | 0/0 | | | | | | # 6.2 Worst Performing Circuits of the Past Five Years (2012 – 2016) The annual performance of the ten worst circuits in terms of SAIDI and SAIFI for each of the past five years is shown in the tables below. Table 6 lists the ten worst performing circuits ranked by SAIDI and Table 7 lists the ten worst performing circuits ranked by SAIFI. The data used in this analysis includes all system outages except those outages that occurred during excludable events in 2016, the 3342/3353 Line Outage in 2014 and Hurricane Sandy in 2012. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 12 of 24 # Table 6 Circuit SAIDI | Oinevit | 20 | 16 | 20 | 15 | 20 | 14 | 20 | 13 | 20 | 12 | |-----------------------------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------| | Circuit Ranking (1 = worst) | Circuit | SAIDI | | 1 | 3H2 | 463.53 | 6W1 | 429.20 | 19X3 | 581.05 | 6W1 | 384.28 | 56X2 | 590.69 | | 2 | 7W1 | 375.29 | 58X1 | 371.96 | 6W1 | 550.41 | 27X1 | 300.82 | 13W2 | 556.17 | | 3 | 3H3 | 255.03 | 47X1 | 362.03 | 43X1 | 513.14 | 47X1 | 275.19 | 13W1 | 383.59 | | 4 | 54X2 | 249.35 | 6W2 | 306.70 | 54X1 | 479.86 | 18X1 | 255.15 | 2X2 | 376.99 | | 5 | 6W1 | 241.11 | 51X1 | 201.87 | 1H3 | 406.51 | 21W1 | 242.80 | 58X1 | 339.87 | | 6 | 43X1 | 226.55 | 22X1 | 172.38 | 22X1 | 345.20 | 13W2 | 212.92 | 7X2 | 317.63 | | 7 | 21W2 | 214.57 | 56X2 | 138.86 | 6W2 | 336.08 | 59X1 | 197.65 | 47X1 | 297.13 | | 8 | 17W2 | 210.69 | 17W2 | 136.96 | 20H1 | 299.78 | 22X1 | 136.57 | 43X1 | 296.43 | | 9 | 58X1 | 203.82 | 27X1 | 126.50 | 51X1 | 297.15 | 15X1 | 128.33 | 23X1 | 292.58 | | 10 | 54X1 | 196.61 | 3W4 | 97.95 | 18X1 | 262.63 | 43X1 | 122.34 | 15X1 | 263.38 | Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 13 of 24 Table 7 Circuit SAIFI | | 2016 2015 2014 2013 | | | | | | 20 | 12 | | | |---------------------------|---------------------|-------|---------|-------|---------|-------|---------|-------|---------|-------| | Circuit | 20 | 10 | 20 | 13 | 20 | 14 | 20 | 13 | 20 | 12 | | Ranking
(1 =
worst) | Circuit | SAIFI | | 1 | 43X1 | 2.94 | 47X1 | 3.82 | 6W2 | 4.70 | 18X1 | 3.40 | 56X2 | 7.39 | | 2 | 3H2 | 2.86 | 22X1 | 3.22 | 20H1 | 4.36 | 21W1 | 3.25 | 13W2 | 5.77 | | 3 | 21W2 | 2.64 | 6W1 | 2.87 | 43X1 | 4.13 | 27X1 | 2.98 | 23X1 | 5.69 | | 4 | 17W2 | 2.31 | 51X1 | 2.51 | 51X1 | 3.82 | 6W1 | 2.95 | 43X1 | 4.22 | | 5 | 21W1 | 2.20 | 58X1 | 2.35 | 6W1 | 3.23 | 47X1 | 2.55 | 6W1 | 4.06 | | 6 | 58X1 | 2.11 | 2X3 | 2.18 | 19X3 | 3.22 | 13W2 | 2.48 | 13W1 | 3.92 | | 7 | 22X1 | 1.92 | 17W2 | 1.86 | 18X1 | 2.84 | 43X1 | 2.42 | 15X1 | 3.89 | | 8 | 27X1 | 1.92 | 13X3 | 1.47 | 21W1 | 2.67 | 7X2 | 1.98 | 59X1 | 3.64 | | 9 | 54X1 | 1.89 | 13W1 | 1.44 | 47X1 | 2.67 | 56X1 | 1.96 | 21W1 | 3.20 | | 10 | 6W1 | 1.72 | 21W2 | 1.43 | 11X1 | 2.64 | 54X1 | 1.91 | 58X1 | 3.13 | # 6.3 System Reliability Improvements (2016 and 2017) Vegetation management projects completed in 2016 and planned for 2017 that are expected to improve the reliability of the 2016 worst performing circuits are included in table 8 below. Table 9 below details electric system upgrades that are scheduled to be completed in 2017 or were completed in 2016 that were performed to improve system reliability. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 14 of 24 Table 8 Vegetation Management Projects on Worst Performing Circuits | vegetati | Year of | t Projects on Worst Performing Circuits | | |------------|------------|---|--| | Circuit(s) | Completion | Project Description | | | | 2017 | Planned Reliability Analysis Details | | | 58X1 | 2016 | Hazard Tree Mitigation | | | | 2010 | Planned Mid-Cycle Pruning | | | | 2017 | Hazard Tree Mitigation | | | 13W2 | 2016 | Tiazaru Tree Miligalion | | | | 2010 | Planned Mid-Cycle Pruning | | | 43X1 | 2016 | Planned Cycle Pruning | | | 43/1 | 2010 | Hazard Tree Mitigation | | | 21W2 | 2017 | Hazard Tree Mitigation | | | 21442 | 2017 | Planned Mid-Cycle Pruning | | | 22X1 | 2016 | Planned Cycle pruning (Carryover from 2015) | | | 2271 | | Hazard Tree Mitigation | | | 21W1 | 2017 | Hazard Tree Mitigation | | | 21001 | 2017 | Planned Mid-Cycle Pruning | | | 6W1 | 2016 | Reliability Analysis Details | | | | 2017 | Planned Cycle Pruning | | | 54X1 | 2017 | Hazard Tree Mitigation | | | | 2016 | Storm Resiliency Program | | | 3H2 | 2016 | Planned Cycle Pruning | | | 7W1 | 2016 | Planned Cycle Pruning | | | 3H3 | 2016 | Planned Cycle Pruning | | | | 2017 | Planned Cycle Pruning | | | 54X2 | 2017 | Hazard Tree Mitigation | | | | 2016 | Storm Resiliency Program | | | | | Planned Mid-Cycle Pruning | | | 17W2 | 2016 | Planned Mid-Cycle Pruning | | Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 15 of 24 | Circuit(s) | Year of
Completion | Project Description | |------------|-----------------------|---------------------------| | | | Planned Mid-Cycle Pruning | | | 2017 | Planned Cycle Pruning | | 56X1 | 2017 | Hazard Tree Mitigation | | | 2016 | Storm Resiliency Program | Table 9 Electric System Improvements Performed to Improve Reliability | Circuit(s) | Year of Completion | Project Description | Justification | |---------------------------------------|--------------------|---|------------------| | 22X1 | 2017 | Relocation of Mainline | 2016 DPB Project | | 47X1 | 2017 | Circuit 47X1 – Install Devices and Implement Pulsefinding Scheme | 2017 DRB Project | | 3343 and
3354 Lines | 2017 | Replace subtransmission tap switches with motor operated switches and connect to SCADA at Munt Hill Tap, Shaw's Hill Tap, Willow Road Tap, East Kingston substation and New Boston Road Tap | 2015 DRB Project | | 3341, 3352,
3351 and
3362 Lines | 2017 | Install in-line motor operated switches with automatic sectionalizing and SCADA control and status in the vicinity of Merrill's Pit | 2015 DRB Project | | 54X1 | 2016 | Recloser additions to split circuit 54X1 into two circuits, 54X1 and 54X1 | 2015 DRB Project | | Plaistow
Substation | 2016 | Upgrades at Plaistow substation to accommodate a large customer includes the installation of reclosers on the 3345 and 3356 lines to supply the 3358 lines. Reclosers will be configured for automatic restoration of the 3358 line upon loss of the 3356 line. | 2016 SPN Project | # 7 Tree Related Outages in Past Year (1/1/16 – 12/31/16) This section summarizes the worst performing circuits by tree related outages during the time period between January 1, 2016 and December 31, 2016. Table 10 shows these circuits ranked by the total number of customer-minutes of interruption. The number of customer-interruptions and number of outages are also listed in this table. This table does not include tree related outages on the subtransmission system. Circuits having two or less tree related outages were excluded from this table. The UES-Seacoast subtransmission system experiences three tree related interruptions that accounted for 12,299 customer interruptions and 1,208,985 customer-minutes of interruption. All streets on the Seacoast system with three or more tree related outage are shown in table 11 below. The table is sorted by number of outages and customer-minutes of interruption. Table 10 Worst Performing Circuits – Tree Related Outages | | st i circinning circi | | o Outages | |---------------------------|---|---------------------------------------|-------------------------| | Circuit | Customer-
Minutes
of Interruption | Number of
Customers
Interrupted | No. of
Interruptions | | 58X1 ¹⁶ | 1,190,827 | 2,645 | 26 | | 13W2 ¹ | 359,684 | 2,258 | 19 | | 23X1 ¹⁷ | 323,086 | 1,449 | 12 | | 6W2 ² | 247,022 | 1,471 | 14 | | 6W1 ¹ | 199,586 | 1,402 | 13 | | 43X1 ¹ | 194,447 | 2,181 | 14 | | 54X1 ¹ | 155,008 | 1,545 | 7 | | 21W1 ¹ | 136,135 | 2,189 | 13 | | 22X1 ¹ | 127,445 | 744 | 18 | | 56X1 ¹ | 119,128 | 360 | 4 | $^{^{16}}$ Pruning is planned or has been completed on this circuit (refer to table 8 for details) 17 Refer to section 11 for recommendations in this area. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 17 of 24 Table 11 Tree Related Outages by Street | Circuit | Street | Town | # Outages | Customer-Minutes of Interruption | No. of Customer Interruptions
| |--------------------|---------------|---------------|-----------|----------------------------------|-------------------------------| | 28X1 ¹⁸ | Exeter Rd | Hampton Falls | 8 | 4,081 | 53 | | 58X1 ¹⁹ | South Main St | Plaistow | 5 | 145,147 | 334 | | 6W21 ¹ | North Rd | Kingston | 5 | 68,444 | 328 | | 13W1 ¹ | North Main St | Plaistow | 5 | 12,568 | 159 | | 58X1 ² | Forest St | Plaistow | 4 | 317,150 | 327 | | 23X1 ¹ | Mill Lane | Hampton Falls | 3 | 292,979 | 1,242 | | 13W2 ² | Pond St | Newton | 3 | 148,983 | 643 | | 43X1 ² | Willow Rd | East Kingston | 3 | 140,303 | 1,864 | | 6W2 ¹ | Main St | Kingston | 3 | 102,758 | 193 | | 22X1 ² | Long Pond Rd | Danville | 3 | 27,094 | 137 | | 43X1 ² | Pickpocket Rd | Exeter | 3 | 26,556 | 121 | | 17W1 ² | Cusack Rd | Hampton | 3 | 16,451 | 149 | | 58X1 ² | Main St | Atkinson | 3 | 13,022 | 179 | | 59X1 ² | Kensington Rd | Hampton Falls | 3 | 10,056 | 104 | | 59X1 ² | Crank Rd | Hampton Falls | 3 | 9,551 | 56 | | 13W2 ² | Quaker St | Newton | 3 | 7,446 | 64 | | 51X1 ² | Winnicut Rd | Stratham | 3 | 4,223 | 58 | | 23X1 ¹ | Woodman Rd | South Hampton | 3 | 4,120 | 36 | # 8 Failed Equipment This section is intended to clearly show all equipment failures throughout the study period from January 1, 2016 through December 31, 2016. Chart 3 shows all equipment failures throughout the study period. Chart 4 shows each equipment failure as a percentage of the total failures within this same study period. The number of equipment failures in each of the top three categories of failed equipment for the past five years are shown below in Chart 5. ¹⁸ Refer to section 11 for recommendations in this area. ¹⁹ Forestry work was completed on this circuit in 2016 and/or is scheduled on this circuit in 2017. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 18 of 24 Chart 3 Equipment Failure Analysis by Cause Chart 4 Equipment Failure Analysis by Percentage of Total Failures Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 19 of 24 Chart 5 Annual Equipment Failures by Category (top three) # 9 Multiple Device Operations in Past Year (1/1/16 – 12/31/16) A summary of the devices that have operated four or more times from January 1, 2016 to December 31, 2016 are included in table 12 below. Table 12 Multiple Device Operations | Circuit | Number of Operations | Device | Customer-
Minutes | Customer-
Interruptions | |--------------------|----------------------|--|----------------------|----------------------------| | 58X1 ²⁰ | 4 | Fuse – Pole 52/28
Main Street, Atkinson | 11,202 | 140 | | 28X1 ¹ | 4 | Fuse – Pole 12/160
Exeter Road, Hampton Falls | 387 | 4 | | 23X1 ²¹ | 4 | Recloser – Pole 142/31
Mill Lane, Seabrook | 302,276 | 1,608 | ²⁰ Operations and Forestry performed a detailed review of the area and observed good tree clearance. ²¹ Refer to section 11 for recommendations in this area. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 20 of 24 #### 10 Other Concerns This section is intended to identify other reliability concerns that would not be identified from the analyses above. #### 10.1 Recloser Replacements Power factor testing has identified that the solid dielectric material used for the poles on a specific type/vintage recloser degrades over time leading to premature failure. In follow up discussions with the manufacturer, they acknowledged that the solid dielectric material used for the recloser poles could prematurely degrade resulting in a dielectric failure. Unitil has experienced two (UES-Seacoast and FG&E) failures of this type/vintage of recloser in 2011 and removed two others from service due to the appearance of tracking. Based on this information, a multi-year replacement program began in 2013 to replace all reclosers of this vintage. There are currently two reclosers in service on the UES-Seacoast system, both at the 3347 Line tap. It is recommended that this program continue in 2017. # 11 Recommendations This following section describes recommendations on circuits, sub-transmission lines and substations to improve overall system reliability. The recommendations listed below will be compared to the other proposed reliability projects on a system-wide basis. A cost benefit analysis will determine the priority ranking of projects for the 2017 capital budget. All project costs are shown overheads. # 11.1 Miscellaneous Circuit Improvements to Reduce Recurring Outages # 11.1.1 Identified Concerns & Recommendations The following concerns were identified based on a review of Tables 10 and 11 of this report; Multiple Tree Related Outages by Street and Multiple Device Operations respectively. # Mid-Cycle Forestry Review The areas identified below experienced three or more tree related outages in 2016. It is recommended that a forestry review of these areas be performed in 2017 in order to identify and address any mid-cycle growth or hazard tree problems. - 6W2 North Road, Kingston - 6W2 Main Street, Kingston - 23X1 Mill Lane, Seabrook Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 21 of 24 - 28X1 Exeter Road, Hampton Falls - 13W1 North Main Street, Plaistow - 23X1 Woodman Road, South Hampton # 11.2 Circuit 13W2 – Replace V4L Reclosers and Relocate Downline # 11.2.1 Identified Concerns Circuit 13W2 is typically one of the worst performing circuits on the UES-Seacoast system and is the second circuit on the 2016 list. #### 11.2.2 Recommendation This project will consist of replacing the two existing sets of 140A V4L reclosers on circuit 13W2 with electronically controlled reclosers. This will allow the existing reclosers to be relocated to Peaslee Crossing Road and Thornell Road. Two additional sets of 100A V4L reclosers will be installed on Highland Street and Pond Street. The existing 13W2 recloser control at Timberlane substation will most likely need to be replaced to accommodate this project. The new reclosers will benefit approximately 1,100 customers. - Estimated annual customer-minutes savings = 53,451 - Estimated annual customer-interruption savings = 660 Estimated Project Cost: \$225,000 # 11.3 Circuit 19X2 – Distribution Automation Scheme with Portsmouth Ave # 11.3.1 Identified Concerns On average one subtransmission outage per year causes an outage to Portsmouth Ave substation or Exeter Switching Station. Additionally, Portsmouth Ave substation is supplied from the 3347 line, which is a radial line that typically experiences damage during major events. # 11.3.2 Recommendation This project will consist of replacing the 11X2J19X2 tie switch with a recloser and the installation communication infrastructure between the new recloser, the 19X2 recloser at Exeter Switching and Portsmouth Ave substation. A distribution automation scheme will be implemented that will restore the 1,700 customers on circuits 11X1 and 11X2 via circuit 19X2 for the loss of the 3347 line. Additionally, for a fault on the 3352 or 3362 line the 600 Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 22 of 24 customers supplied by circuit 19X2 will automatically be restored via circuit 11X2. - Estimated annual customer-minutes savings = 64,182 - Estimated annual customer-interruption savings = 792 Estimated Project Cost: \$175,000 #### 11.4 Circuit 43X1 – Recloser Installation # 11.4.1 Identified Concerns Circuit 43X1 was one of the worst performing circuits in 2016 and has been on the worst performing SAIDI circuit list four of the last five years. A detailed protection review of circuit 43X1 indicated that the installation of a new recloser and relocating the existing 150 QA fuses is expected to improve overall circuit reliability. # 11.4.2 Recommendation This project will consist of replacing the 150 QA fuses at pole 55 Exeter Road with an electronically controlled recloser, with the intent of relocating the 150 QA fuses to the vicinity of pole 64 Exeter Road. The new recloser will benefit approximately 1,400 customers and the new fuse location is expected save approximately 650 customer interruptions per year. This project is the first step to implanting a distribution automation scheme with circuit 19X3. - Estimated annual customer-minutes savings = 44,649 - Estimated annual customer-interruption savings = 1,102 Estimated Project Cost: \$75,000 # 11.5 3346 Line – Automatic Restoration Scheme # 11.5.1 Identified Concerns The 3346 line in an unprotected subtransmission tap off the 3342 line with an alternate source of the 3353 line. # 11.5.2 Recommendation This project will consist of installing two reclosers at the 3346 line, replacing the 46J42 and 46J53 switches. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 23 of 24 An automation scheme would be implemented to automatically restore the 3346 line for loss of the 3342 line. Additionally, the new reclosers will be set to operate for faults on the 3346 line. - Estimated annual customer-minutes savings = 59.528 - Estimated annual customer-interruption savings = 1,253 Estimated Project Cost: \$160,000 # 11.6 Recloser Replacements #### 11.6.1 Identified Concerns Unitil has experienced premature failures of a specific type/vintage of recloser due to insulation breakdown of the poles. This will be the final year of a multi-year project to replace the reclosers of the identified type/vintage. #### 11.6.2 Recommendation This project will consist of replacing the remaining two reclosers on the UES-Seacoast system. • Two (2) at 3347 Line Tap Below is a summary of the reliability benefit for this project: | Recloser | Customers of Exposure | |
 | |----------|-----------------------|--|--|--| | 3347A | 5,350 | | | | | 3347B | 7,900 | | | | - Estimated annual customer-minutes savings = 104,992 - Estimated annual customer-interruption savings = 1,296 Estimated Project Cost: \$125,000 # 11.7 Installation of Motor Operated Switches at Substations and Subtransmission Taps # **11.7.1 Summary** Unitil acquired several motor operated switches in 2014. It was determined that many of these switches would be used to replace the existing manually operated switches that connect substations and distribution taps to the UES-Seacoast subtransmission system. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 3 Page 24 of 24 Reference the document titled Motor Operated Switch Installation – Project Justification, dated February 24th, 2015 for additional information. # 11.7.2 Switches Proposed for Replacement – 2018 Based on the project justification document referenced above the following switches are proposed for replacement in 2018. | Location | Switches
to be
Replaced | Cost
(w/o OH's) | Special Details | |----------------|-------------------------------|--------------------|-------------------------| | Timberlane S/S | J1356
J1345 | \$30,000 | Pre-Existing SCADA Site | | Total | 2 Switches | \$30,000 | | #### 12 Conclusion The UES-Seacoast system has been greatly affected by outages involving tree contact and equipment failures. A more aggressive tree trimming program began in 2011 and has started to reduce the number and impact of tree related outages. In 2012 three circuits on the UES-Seacoast benefited from a storm resiliency pruning (SRP) pilot, which consisted of ground to sky trimming and hazard tree removal. Due to the success of this pilot, five additional UES-Seacoast circuits had SRP performed in 2014 and an additional six circuits were completed in 2016. The recommendations in this report are aimed at reducing the duration and customer impact of outages, improving the reliability of the subtransmission system and mitigating damage to distribution mainlines and subtransmission lines during major events. This report is also intended to assist Unitil Forestry in identifying areas of the system that are being frequently affected by tree related outages to allow proactive measure to be taken. Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 4 # Attachment 4 # Reliability Project Listing 2017 Budget Versus Actual Expenditures Unitil Energy Systems, Inc. Reliability Enhancement Program Vegetation Management Program Annual Report2017 Attachment 4 Page 1 of 1 # Reliability Project Listing 2017 Budget Versus Actual Expenditures | DOC | Bud # | Description | Auth # | Budgeted | Authorized | Actual Exp. | |----------|--------|--|--------|--------------|--------------|--------------| | UES | | Circuit 22W3: Install Sectionalizers on | | | | | | Capital | DRBC03 | Birchdale Road | 170139 | \$ 10,157.09 | \$10,157.09 | \$ 9,513.63 | | UES | | Bow Junction Substation: Install an Auto | | | | | | Capital | DRBC01 | Transfer Scheme | | \$139,612.00 | - | | | UES | | Circuit 8X3: Install a Fusesaver on Lane | | | | | | Capital | DRBC02 | Road | | \$ 15,166.00 | - | \$ 6.940.59 | | UES | | 374 Line: Install an Autosectionalizing | | | | | | Capital | DRBC04 | Scheme | | \$ 67,324.00 | - | | | UES | | 375 Line Automatic Sectionalizing at Terrill | | | | | | Capital | DRCC00 | Park | | \$160,643.00 | - | | | UES | | | | | | | | Capital | DROC13 | Substation Reliability Improvements | 170166 | \$ 0.00 | \$172,000.00 | \$ 67,649.27 | | UES | | Install 430 ft of conduit and 1/0 Al 35KV | | | | | | Capital | DROC15 | URD cable | 170155 | \$ 0.00 | \$53,829.36 | \$59,298.95 | | UES | | Circuit 47X1 - Install Devices w/ | | | | | | Seacoast | DRBE01 | Pulsefinding | 171020 | \$413,510.25 | \$413,510.25 | \$417,850.24 | | UES | | | | | | | | Capital | DPBC01 | Distribution Pole Replacement | 170115 | \$696,640.08 | \$735,136.91 | \$753,379.51 | | UES | | | | | | | | Seacoast | DPBE01 | Distribution Pole Replacements | 171024 | \$653,326.95 | \$780,000.00 | \$770,796.75 |